Модели физического вакуума в неабелевой калибровочной теории поля

  • Автор:
  • Специальность ВАК РФ: 01.04.02
  • Научная степень: Кандидатская
  • Год защиты: 1985
  • Место защиты: Москва
  • Количество страниц: 127 c. : ил
  • Стоимость: 250 руб.
Титульный лист Модели физического вакуума в неабелевой калибровочной теории поля
Оглавление Модели физического вакуума в неабелевой калибровочной теории поля
Содержание Модели физического вакуума в неабелевой калибровочной теории поля
ОБОЗНАЧЕНИЯ
ГЛАВА I. ПЛОСКОВОЛНОВЫЕ РЕШЕНИЯ УРАВНЕНИЙ ЯНГА-МИЛЛСА. ПОСТОЯННЫЕ ПОТЕНЦИАЛЫ И ПРОБЛЕМА ИХ
УСТОЙЧИВОСТИ
§1. Точные решения уравнений Янга-Миллса с током
§2. Решение уравнений Янга-Миллса в мнимом времени
§3. Стабильность постоянных калибровочных полей
ГЛАВА II. НЕСТАБИЛЬНОСТЬ ВАКУУМА В НЕАБЕЛЕВОЙ ТЕОРИИ ПОЛЯ.
КВАЗИКЛАССИЧЕСКОЕ ОПИСАНИЕ
§4. Метод мнимого времени. Действие и уравнения
движения классической частицы с изоспином
§5. Нестабильность вакуума во внешних калибровочных
полях, заданных линейными потенциалами
§6. Неустойчивость вакуума в теории Янга-Миллса во внешнем хромоэлектрическом поле, заданном постоянными потенциалами
ГЛАВА III. ПОЛЯРИЗАЦИЯ МОДЕЛЬНОГО НЕПЕРТУРЕАТИВНОГО
ВАКУУМА В КХД. СКАЛЯРНЫЕ ЧАСТИЦЫ
§7. Температурный эффективный лагранжиан
§8. Эффективный однопетлевой лагранжиан скалярных
изоспинорных частиц
§9. Поляризация вакуума в теории Янга-Миллса во
внешних хромомагнитных полях за счет петли скалярных изовекторных частиц
ГЛАВА ІУ. ПОЛЯРИЗАЦИЯ МОДЕЛЬНОГО НЕПЕРТУРЕАТИВНОГО ВАКУУМА
В КХД. КВАРКОВЫЙ СЕКТОР . . .
§10. Температурный эффективный лагранжиан кварков . . 92 §11. Энергетический спектр кварка в симметричном
хромомагнитном поле
§12. Кварковый вклад в плотность энергии непертурбативного основного состояния КХД
ЗАКЛЮЧЕНИЕ
ЛИТЕРАТУРА
Квантовая теория калибровочных полей занимает доминирующее положение в физике элементарных частиц. С ней связаны надежды объединения всех фундаментальных взаимодействий в природе: описания гравитационного, электромагнитного, слабого и сильного взаимодействий элементарных частиц в рамках единой теории.
Основой этих теорий служит принцип локальной калибровочной инвариантности взаимодействий относительно той или иной группы симметрии. Хорошо изученным примером квантовой калибровочной теории поля является квантовая электродинамика [1-3], в рамках которой была разработана теория возмущений, позволяющая вычислять процессы с участием электронов, позитронов и фотонов с любой степенью точности. Электромагнитное поле оказалось калибровочным полем принимающим значения в алгебре Ли абелевой группы и (1) , а уравнения Максвелла - уравнениями движения абелевого калибровочного поля [4].
Янг и Миллс развили указанный принцип локальной калибровочной инвариантности для неабелевых групп / конкретно, для группы изотопической симметрии сильных взаимодействий / [б]. Вообще говоря, поля Янга-Миллса можно ассоциировать с любой компактной полупростой группой Ли [4] . Оно задается векторным полем, принимающим значения в алгебре Ли этой группы.' Получаемые с помощью принципа наименьшего действия уравнения движения называются уравнениями Янга-Миллса. Они представляют собой систему нелинейных уравнений второго порядка в частных производных. Неабелев характер калибровочной группы радикально меняет теорию: она заключает в себе самодействие, обладает богатой непертурба-тивной структурой, свойством асимптотической свободы и т. д.
ния соответствующих операторов по волновому пакету, тогда как в {78] операторы просто заменялись С - числовыми функциями. В итоге полученная система уравнений выглядит так:
гг = М-^4(Еир-Е^)'
(4.19)
сК * 1 4Р
Г^Р
Здесь
Ьм /,|Л , (4.20)
<ььШ = ДОг>. ПД--<т IН51 у>,
где I- волновым пакет. Все операторы записаны в представлении Шредингера. Величины 3 смешивают спиновые и изоспиновые степени свободы. Однако, как отмечает сам автор [83] , при выводе сделаны сильные предположения о свойствах волнового пакета, считается, что средние от Дх1= %1- ХС({) , где Х^)- траектория частицы,обращаются в нуль. Невыполнение одного из этих допущений приводит к нарушению (4.19)
Другой подход использован в [84] , где для описания спина

Рекомендуемые диссертации данного раздела